Regression and correlation examples

Example 1 Data is gathered to explore the relationship between outside temperature and the amount of gas used to heat a specific house. A standard measure of outside temperature used for this purpose is the *heating degree day (HDD)*. For a given day, the value of HDD is the difference between $65^{\circ}F$ and the average outside temperature for that day. So, for a day on which the average outside temperature is $49^{\circ}F$, we have 16 heating degree-days. (The reference temperature of $65^{\circ}F$ is used because a typical house needs no heating when the average outside temperature is $65^{\circ}F$.) The language here is a bit awkward since "heating degree-day" refers to both the variable and the unit used for the variable. We'll denote the variable HDD and the unit hdd. So, for the example we have HDD=16 hdd.

The table below gives data for HDD and gas usage (in hundreds of cubic feet) for a specific house. Here are summary statistics for the individual distributions:

H=HDD
$$\bar{h} = 22.31 \text{ hdd}$$
 $s_h = 17.74 \text{ hdd}$
G=Gas Used $\bar{g} = 5.306$ $s_g = 3.368$ (both in hundred cubic feet)

The scatterplot below includes a vertical line for the HDD mean and a horizontal line for the Gas Used mean. For these two variables, the correlation is r = 0.995.

HDD	Gas Used									
24	6.3									
51	10.9									
43	8.9	Scatterplot of Gas Used vs HDD 22.31								
33	7.5	¹²				22.31				7
26	5.3	10							••	
13	4.0	cubic						•		
4	1.7	s of					•			
0	1.2	9 drec				•				
0	1.2	Gas Used (in hundreds of cubic feet) 7 9 9 8 01					•			5.31
1	1.2	ed (i			•					
6	2.1	SN 2	•••	•						
12	3.1	ن 0								
30	6.4		0		10	20 H	30 IDD	40	50	
32	7.2									
52	11.0									
30	6.9									

- 1. Compute the slope and intercept of the least-squares regression line for this data. Write down a formula for the least-squares regression line. Use this to plot the least-squares regression line on the scatterplot given above.
- 2. Use the least-squares regression line to predict the amount of gas used on a day when the average outside temperature is 45 $^{\circ}{\rm F}$.

Example 2 A physics student does an experiment that involves launching a ball straight up and then measuring the height of the ball every tenth of a second. The table below shows the data with time t given in seconds and height h given in meters. For the time data distribution, the mean is $\bar{t} = 1.50$ inches and the standard deviation is $s_t = 0.909$ seconds. For the height data distribution, the mean is $\bar{h} = 7.626$ meters and the standard deviation is $s_h = 3.663$ meters. The correlation for these two variables is r = 0.072. With these values, we can calculate the slope and intercept values for the least-squares regression line as

$$b = r \frac{s_h}{s_t} = 0.072 \times \frac{3.663 \text{ m}}{0.909 \text{ s}} = 0.290 \text{ m/s}$$

and

$$a = \bar{h} - b\bar{t} = 7.626 \text{ m} - 0.290 \text{ m/s} \times 1.50 \text{ s} = 7.191 \text{ m}.$$

- 1. Describe the association (form, direction if relevant, strength) between time and height seen in this scatterplot.
- 2. What does the correlation value of r = 0.072 tell us about this association?
- 3. Write down the formula for the least-squares regression line and plot this line on the scatterplot. How useful is the regression line as a predictor for heights?