MATH 160G Introduction to Applied Statistics Spring 2008

Regression and correlation examples

Example 1 Data is gathered to explore the relationship between outside temperature and the
amount of gas used to heat a specific house. A standard measure of outside temperature used for
this purpose is the heating degree day (HDD). For a given day, the value of HDD is the difference
between 65°F and the average outside temperature for that day. So, for a day on which the average
outside temperature is 49°F | we have 16 heating degree-days. (The reference temperature of 65°F
is used because a typical house needs no heating when the average outside temperature is 65°F .)
The language here is a bit awkward since “heating degree-day” refers to both the variable and the
unit used for the variable. We’ll denote the variable HDD and the unit hdd. So, for the example
we have HDD=16 hdd.

The table below gives data for HDD and gas usage (in hundreds of cubic feet) for a specific house.
Here are summary statistics for the individual distributions:

H=HDD h =22.31 hdd s, =17.74 hdd
G=Gas Used g = 5.306 54 = 3.368 (both in hundred cubic feet)

The scatterplot below includes a vertical line for the HDD mean and a horizontal line for the Gas
Used mean. For these two variables, the correlation is r = 0.995.
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1. Compute the slope and intercept of the least-squares regression line for this data. Write down
a formula for the least-squares regression line. Use this to plot the least-squares regression
line on the scatterplot given above.

2. Use the least-squares regression line to predict the amount of gas used on a day when the
average outside temperature is 45 °F .



Example 2 A physics student does an experiment that involves launching a ball straight up and
then measuring the height of the ball every tenth of a second. The table below shows the data with
time t given in seconds and height h given in meters. For the time data distribution, the mean is

t=1.

50 inches and the standard deviation is s; = 0.909 seconds. For the height data distribution,

the mean is h = 7.626 meters and the standard deviation is s, = 3.663 meters. The correlation for

these

two variables is r = 0.072. With these values, we can calculate the slope and intercept values
for the least-squares regression line as
S, 3.663 m
b=r—=0.072 x ———— = 0.290
" " 70.909 5 m/s

and

a=nh-—>0bt="7.626m—0.290 m/s x 1.50 s = 7.191 m.
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. Describe the association (form, direction if relevant, strength) between time and height seen

in this scatterplot.

. What does the correlation value of r = 0.072 tell us about this association?

. Write down the formula for the least-squares regression line and plot this line on the scatter-

plot. How useful is the regression line as a predictor for heights?



